Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X), YS) → cons(X)
from(X) → cons(X)
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X), cons(Y)) → cons(app(Y, cons(X)))
prefix(L) → cons(nil)

Q is empty.


QTRS
  ↳ DirectTerminationProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X), YS) → cons(X)
from(X) → cons(X)
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X), cons(Y)) → cons(app(Y, cons(X)))
prefix(L) → cons(nil)

Q is empty.

We use [23] with the following order to prove termination.

Lexicographic path order with status [19].
Quasi-Precedence:
from1 > [app2, cons1]
zWadr2 > nil > [app2, cons1]
prefix1 > nil > [app2, cons1]

Status:
from1: [1]
app2: [2,1]
prefix1: [1]
nil: multiset
cons1: [1]
zWadr2: [2,1]